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Several criteria suitable for taking a decision regarding the centrosymmetry of crystals by the study of 
the goodness-of-fit of the observed and expected cumulative, semi-cumulative and distribution functions 
of normalized structure amplitudes are suggested. Practical aspects of the various tests are discussed. 
From a study of the performance of these tests on four crystals a safe method of conducting these tests 
is suggested. 

1. Introduction 

The cumulative function test (Howells, Phillips & 
Rogers, 1950) and the distribution function test 
(Ramachandran & Srinivasan, 1959) are two of the 
earliest tests for centrosymmetryt (see Srinivasan & 
Parthasarathy, 1976, for a recent summary). The semi- 
cumulative function test (Hargreaves & Gogoi, 1966; 
Srikrishnan & Parthasarathy, 1970) was later pro- 
posed. The power of these tests has not so far been 
fully realized since no quantitative criteria for the 
goodness-of-fit of the observed and expected theor- 
etical distributions are utilised. Several criteria for 
goodness-of-fit are available in the theory of statistics 
and this paper aims at showing how these criteria could 
be adapted to make the above three tests for centro- 
symmetry quantitative. 

Some of the goodness-of-fit tests require actual 
values of the normalized structure amplitudes (de- 
noted by y) of all the reflexions in a given region of 
sin 0/2. Since, in practice, such complete data are un- 
available because some reflexions are too weak to be 
observed, it would be useful to develop tests which 
could be conducted with only the reflexions whose 
normalized intensities are greater than the threshold 
value, say Yr. The modified distributions of y needed 
for such a case are derived in § 2 and used in con- 
ducting the various goodness-of-fit tests.:]: 

To obtain the best results from these tests, the nor- 
malized intensities need to be sufficiently accurate 
(Rogers, Stanley & Wilson, 1955). Further, for con- 
ducting these tests with computers it would be useful 
to obtain an analytic expression¶ for (Io) as a func- 

* Contribution No. 453. 
t Since the different statistical tests are affected differently by 

any given type of error in the observed intensities it is preferable to 
conduct different tests in order to arrive at a decision (Rogers, 
Stanley & Wilson, 1955). 

++ The binomial test is an exception [for details see § 4(iii)]. 
¶ (Io) is needed to convert the observed intensities Io into nor- 

malized intensities z through the relation z=lo/(lo). Note that 
z =y2, where y is the normalized structure amplitude. 

tion of sin 0/2 (hereafter s). A procedure for doing this 
is described in § 5. 

We shall consider six different goodness-of-fit tests, 
namely (i) Pearson's chi-square test, (ii) likelihood ratio 
test, (iii) binomial test, (iv) Kolmogorov test, (v) 
Smirnov-Cramer-Von Mises test and (vi) a Neyman-  
Barton smooth test. Of these (i) and (ii) provide quan- 
titative criteria for goodness-of-fit for the distribution 
function. The statistic in (iii) provides a criterion for 
making the semi-cumulative function test quantita- 
tive. Tests (iv)-(vi) provide quantitative criteria for 
goodness-of-fit for the cumulative function. Of these 
(i)-(iii) require ordering of data into histogram bins 
and the others require unbinned data. In statistical 
theory these tests come under the domain of hypoth- 
esis testing, described in standard books on sta- 
tistics (Eadie, Drijard, James, Roos & Sadoulet, 1971; 
Siegel, 1956;-hereafter abbreviated as E, 1971; S, 1956 
respectively). To make the present discussion clear we 
shall summarize the methodology in § 3. The details 
of each of the tests are described in § 4. In order that 
the performance of these tests could be studied, they 
were tried on the observed data of four crystals, and 
the results are discussed in § 5. 

In this paper we shall deal with tests for centro- 
symmetry for crystals which satisfy the requirements 
of the basic Wilson (1949) distributions. The modifi- 
cations needed for conducting these tests in crystals 
with heavy atoms or pseudosymmetry are briefly in- 
dicated in § 6. It is convenient to use abbreviations 
C and NC to denote the terms centrosymmetric and 
non-centrosymmetric respectively. 

2. Probability distribution functions for normalized 
intensities and normalized structure amplitudes valid 

for truncated data 

Let P(x) be the probability density function (abbre- 
viated as pdf), and N(x) the cumulative function of a 
random variable x, O_<x<ov. Let Pt(x) denote the 
normalized pdf of x when the range of x is restricted 
to xt_< x < ~ (i.e. when x is truncated). Pt(x) is related 
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to P(x) through 

P(x) 
Pt(x) = oo 

f P(x)dx 
x t 

P(x) 
w 

1 -N(x t ) '  
x t ~ x < o o .  (1) 

If the Wilson (1949) distribution functions are applied 
to (1) the pdf of z applicable to the truncated data, 
Z t ~ Z <  00,  1S 

P,(z)=exp ( -  z)/exp ( -  zt) for NC 
=(2nz)-  1/2 exp ( -  z/2)lerfc (zt/2) 1/2 for C. (2) 

The corresponding pdf of the normalized structure 
amplitude y valid for Yt < Y < ~ is 

Pt(y) = 2y exp (-yZ)/exp ( -y~)  for NC 

= exp (-y2/2)/erfc (yt/q/2) for C.  (3) 

Evidently, 

zt=y~. (4) 

When z,=yt=O, (3) and (4) reduce to the standard 
results valid for the untruncated data. 

3. Methodology of conducting the various tests 

The methodology of conducting these tests may be 
summarized in the following steps (for more details 
see E, 1971; S, 1956). (i) State the null hypothesis Ho. 
(ii) Define a suitable test statistic, say S, as a goodness- 
of-fit criterion and obtain its sampling distribution 
under Ho, say P(S). Often it is simpler to use a suf- 
ficiently large sample for the asymptotic form of P(S) 
to be obtained easily. (iii) Specify a level of significance 
c~. In statistical applications the usual value of ~ is 
0.05 (though values such as 0.01 and 0.1 are occa- 
sionally used). (iv) For this value of ~ obtain the critical 
value (say Sc) of the statistic from the sampling distribu- 
tion P(S). This partitions the range of values of S into 
two regions called the region of acceptance, say A, 
and the region of rejection, say R (also called the 
critical region). (v) From the sample data compute the 
observed value of the statistic as So. (vi) Take a deci- 
sion which consists in accepting Ho (at the chosen 
level c~) if So lies in the region A and in rejecting Ho 
if So lies in the critical region R. 

Unless stated otherwise, we shall take the null hypo- 
thesis Ho to be that the crystal is C. Equivalently we 
can state Ho as* 

* In the binomial test we take Ho as 

P(y)= k~)exp  (-y2/2),  0_< y <  oo 

since no truncation of data is needed. 

Ho:Pt(y) = exp (-yZ/2)/erfc (yt/]/2), 

yt<_y< oo . (5) 

4. Description of the various tests 

(i) Pearson's chi-square test 
Suppose that the n observations are ordered into k 

histogram bins defined by the set of k intervals for 
the normalized structure amplitudes y: Yi- 1 < Y < Yi, 
i = 1,2,..., k. Let ni be the number of reflexions in bin i. 
Let Pi be the probability content of bin i under Ho. 
Thus, if Po(Y) is the pdf of y under Ho, then 

f" Pi = Po(y)dy, i= 1,2,. . . ,k,  (6) 
Yi- 1 

where Po(Y) is the function Pt(Y) given in ( 5 ) T h e  
statistic in this case can be shown to be (E, 1971). 

T=-1 --~ (ni-npi) 2 (7) 
n i = l  Pi 

The sampling distribution of T under Ho follows the 
chi-square distribution with k - 1  degrees of freedom 
[denoted hereafter as z2(k - 1)]. The critical values of 
Z 2 are tabulated (S, 1956) for different degrees of 
freedom k and for different values of ~. Hence the 
critical value of T required for conducting this test 
for any given a can be read from a 7, 2 table. 

Note the following practical points regarding this 
test: (a) The asymptotic z2(k - 1) distribution of (7) 
requires that the number of events expected under Ho 
be greater than five. According to Cochran (1952, 
1954) this criterion can be relaxed to the level that not 
more than 20% of the bins have expectations less than 
five. (b) Since too few bins carry too little information 
and since too many bins may lead to too few events 
per bin, it would be useful to obtain the optimum 
number of bins k into which a given set of n reflexions 
can be grouped. An expression from which the op- 
t imum value of k could be obtained is given in E 
(1971). (c) For a given number (k) of bins, the bins 
should be chosen so as to have equal probability con- 
tent under Ho. 

(ii) Likelihood-ratio test 
With the notation used in § 4(i) the test statistic for 

this case can be written as (E, 1971) 

A=--21Oge[nn fi (- Pi~nil (8) 
, - - ,  #/J" 

A behaves asymptotically as )~2(k- 1). 

(iii) Binomial test 
It is known that the P(y) curves for the centric and 

acentric Wilson distributions intersect at the points 
y = 0.439 and y = 1.704 (Srikrishnan & Parthasarathy, 
1970). These points divide the range 0_<y<oo into 
three intervals, namely, 0 <__ y < 0.439, 0.439 _< y < 1"704 
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and 1-704< y < co (called intervals 1, 2 and 3 respec- 
tively). The reflexions belonging to interval 2 can be 
conveniently characterized as medium while those 
belonging to classes 1 and 3 as weak and strong 
respectively. It is convenient to name the reflexions 
belonging to interval 2 as class M and those belonging 
to intervals 1 and 3 as class M. It is known that the 
area under the P(y) curve and between the lines y = 
0-439 and y =  1.704 is 0.571 for the C case and 0.768 
for the N C  case. The null hypothesis that the given 
crystal is C can be equivalently stated as 

Ho :p = 0.571, (9) 

where p is the proportion of reflexions belonging to 
class M. Let us denote 1 - p  by q, the proportion of 
reflexions belonging to class M. The alternative hypoth- 
esis H x may be stated as* 

H1 :p > 0"571. (10) 

The test statistic is the number x of reflexions (out 
of a total of n) that belong to class M. The sampling 
distribution of x is the binomial distribution given by 

If p~-0.5 and n > 2 5  the sampling distribution of x is 
approximately normal with mean np and variance 
npq. Hence Ho may be tested by the statistic B de- 
fined by 

B =  x +_O'5-np (12) 
(npq) 1/2 

The sampling distribution of B is the standard normal 
distribution with zero mean and unit variance. In (12), 
x+0 .5  is to be used when x < n p  and x - 0 . 5  when 
x > np (this is called the correction for continuity). The 
critical value of B for the one-tailed test (for any c~) 
can therefore be read from a table of the standard 
normal distribution. 

* This is because in the present case the alternative is that the 
crystal is NC in which case p=0.768 which is >0.571. 

(iv) Kolmogorov test 

Suppose the set of n observed values of normalized 
structure amplitudes is ordered such that 

Y(x) < Y(2) < . . .  <Yr.). (13) 

From (13) the observed cumulative function N,(y) is 
defined by 

0 i fy  <Ytx) 

N,(y)= i/n if y(i) <Y<Y(i+I) ,  i= 1 ,2 , . . . , n -  1 

1 i f y ( . ) < y .  (14) 

Let the cumulative function of y under Ho be denoted 
by No(y). From (5) we can show that, for the data with 
a y cut-off, Ho can be written as 

Ho :No(y)= [eft (y/I//2) 

-er f (y t /q/ /2)] /er fc(ydl /2) ,  y,<_ y <  ~ . (15) 

The test statistic D, is defined to be the maximum 
deviation of the observed cumulative function from 
that expected under Ho, i.e. 

D, = m a x  [N.(y)-  No(Y)I • (16) 

From the asymptotic sampling distribution of D, 
(valid for n>80)  the critical values of (n)l/2D, have 
been shown to be 1.63, 1.36 and 1.22 respectively cor- 
responding to e=0.01,  0"05 and 0.1 (E, 1971). 

(v) Smirnov--Cramer-Von Mises test 
The statistic W 2 in this case is the expected mean 

square difference between the observed cumulative 
function and that under Ho, namely No(y). It is shown 
that (E, 1971) 

-~ "~n i-~- I N°(y(i))- (17) 

From the asymptotic characteristic function of n W  2 
(valid for n > 3) the critical values of n W 2 correspond- 
ing to the level of significance ~=0.01, 0-05 and 0-1 
have been shown to be 0.743, 0.461 and 0-347 re- 
spectively. 

Table 1. Details of  the crystal structures on which the various statistical tests were conducted 

Space 
Crystal* group 

I Pi 

II Pi 

III P1 

IV P1 

No. of reflexions in 
Molecular 

Name of the crystal formula <z> Set B Set C 
Dimethyl ester of m e s o -  C6H1606 1.009 828 697 
tartaric acid 
5~-Hydroxy-6~-4'[5'- C10HlzN404.HzO 0.996 1201 922 
methylpyrimidin-2'-one] 
dihydrothymine 
L-N-Acetylhistidine CsH ! 1N303 • H 2 0  1"008 1053 1034 
monohydrate 
11,11-Dimethyltricyclo C13H14 0"982 1039 1010 
[4,4,1,01'6]undeca - 
2, 4, 7, 9-tetrane 

* The structures I to IV were solved by Kroon & Kanters (1973); Karle (1969); Kistenmacher, Hunt & Marsh (1972); Bianchi, Morosi, 
Mugnoli & Simonetta (1973) respectively. 
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(vi) Neyman-Barton smooth test 
Obtain from the ordered set (13) a second ordered 

set x~ by the transformation 

xi=No(y~o), i=1 ,2 , . . . ,n ,  (18) 

where No(y) is the cumulative function under Ho (see 
equation 15). Under Ho the xi are uniformly distri- 
buted in the interval 0 < x <  1. The statistics in this 
test are constructed for specified departures from 
uniformity. The following two statistics could be used 
in practice: 

P~= nl lr(Xi) , s = 1 , 2 ,  (19) 
r = l  i = l  

where the functions lr(x) are the Legendre polynomials 
of order r, orthonormal on (0,1). If n>20, it is shown 
that the sampling distributions of the statistics p~ and 
p2z (see equation 19) are Z2(1) and g2(2) respectively 
(E, 1971). 

5. Practical applications 

In order to study the performance of the various 
goodness-of-fit tests, the criteria of § 4 were tried on 
the observed data of four triclinic crystals (Table 1). 
From the [Fo[ data the reflexions for which sin 0/2 < 
0"55 were partioned into cells of sin 0/2 (abbreviated 
as s). Each unobserved reflexion was also included* 
with a value which is half the local least observed 
value of the structure amplitude. The valuest of <Io> 
and that of s for each cell were then obtained. Least- 
squares polynomials of different degrees of the type 

N 
<Io>= ~ ais i (20) 

i=0 

were fitted to this set of points (si, <Io>~), i=  1 to m. 
The polynomial equation which gives the best fit with 

* Such a procedure is essential for deriving z values as accurately 
as possible. However, the unobserved reflexions could be subse- 
quently cut off in the actual tests by using the modified pdf of y 
(or z). Note also that for convenience we shall call the set of reflexions 
(including the unobserved ones) for which 0 <  s<  0.55 set A. 

t If the extreme values of sin 0/2 corresponding to the reflexions 
within a thin shell in reciprocal space are sl and s2, then the value 
of s corresponding to this shell is the weighted average given by 

-s l ) / (s2-sl) .  This result can be derived analytically by sub- 
dividing the given shell into elementary subshells (Parthasarathi, 
1975). 

the data was then determined from a study of the 
standard deviations for the various degrees N of the 
polynomial equation. The coefficients of the best 
polynomial and its degree are given in Table 2 (for 
the principle of the method and the programming 
see Carnahan, Luther & Wilkes, 1969). The graphs of 
the best polynomial equations for the four crystals are 
shown in Fig. 1. 

From the reflexions of set A, reflexions for which 
s<  1/amin (where ami  n is the smallest cell dimension 
of the crystal) were omitted (Wilson, 1949). The z 
values (note that Z=Io/<lo>) of all the reflexions (in- 
cluding the unobserved ones) in the range (1/am~,)< 
sin 0//2<0"5 (for convenience, this set of reflexions is 
called set B) were then obtained from the analytical 
expression for <1o> (see equation 20). The value of 
<z> for the reflexions of set B was then calculated 
and is close to unity as expected* (Table 1). 

The binomial test was conducted with the reflexions 
of set Bt by taking the null hypothesis to be that the 
crystal is C. The results obtained for the various crys- 
tals are summarized in Table 3. Here the values in 
the row OV(C) represent the observed values of the 
statistic when Ho is that the crystal is C and those in 
the row CV(C) are the critical values of the statistic 
corresponding to c~ = 0.05 when Ho is that the crystal 
is C. A comparison of the corresponding values in 
these rows shows that this test leads to a correct 
decision in all the cases at the level c~ = 0.05. 

The other five tests were conducted with the data 
with a y cut-off. From a study of the least observed 
values of IFol in the various regions of sin 0/2 for the 
four crystals, it was found that a value of 0.15 for Yt 
would be a suitable cut-off limit. From the set B, the 
reflexions for which y<0.15 were therefore omitted, 
resulting in a new set C. With the reflexions of set C, 
the five tests~ were conducted and the results obtained 
are summarized in Table 3. 

* Though the relation <z> = 1-0 does not provide a test for centro- 
symmetry, it provides a check on the accuracy of the z data. Hence 
the evaluation of <z> is recommended in statistical tests. 

i" It is obvious that the inaccuracy of the z values of the un- 
observed reflexions will not affect this test since all the reflexions 
are grouped into only two classes, namely, M and M [see § 4 (iii)]. 

J; Reflections of set C evidently satisfy the conditions that 
(1/amin) < (sin 0/2) < 0-5 and y, < y < ~ simultaneously. It is obvious 
that this set would contain no unobserved reflexions. 

N 
Table 2. Coefficients ai of the best polynomial equation <Io> = ~_, ais i for the various crystals 

i=0 

Crystal I II III IV 
N 5 4 6 6 
ao 0.6159700 (3)* 0.8896042 (3) 0.7032594 (3) 0-4816834 (3) 
al 0.5251690 (4) 0.7415506 (4) 0.9569445 (4) 0.8114339 (4) 
a2 -0-1383913 (5) -0.7500976 (5) -0.9625175 (5) -0.8994018 (5) 
a3 0.7345037 (4) 0.1926998 (6) 0.2123507 (6) 0-2701496 (6) 
a4 0-8099037 (5) -0.1581581 (6) 0.1661707 (6) -0.1858583 (6) 
a5 -0"1085313 (6) - -0"1028943 (7) -0"3570500 (6) 
a6 - - 0"8855826 (6) 0"4455345 (6) 

* 0.6159700 (3) means 0.6159700 x 10 a etc. 
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From Table 3 we obtain the following results when 
Ho is that the crystal is C: when the level of significance 
~=0"05, the chi-square test, the likelihood-ratio test, 
the binomial test, the Kolmogorov test and Neyman-  
Barton test (via statistic p2) lead to correct decisions, 
while the Smirnov-Cramer-Von Mises test fails for 
II and the Neyman-Barton test (via statistic p~) fails 
for II and IV. 

In order to make the study complete the various 
tests were repeated by taking the null hypothesis to 
be that the crystal is NC. The observed values of the 
statistic thus obtained are summarized in Table 3 
against the rows marked OV(NC). The critical values 

(when ~=0"05) for all the tests except the binomial 
test turn out to be the corresponding ones obtained 
for the C case and hence these correspond to the values 
given against the rows marked CV. The critical values 
(when c~=0.05) for the binomial test for the present 
case are given against the row CV(NC). From Table 3, 
we obtain the following results when Ho is that the 
crystal is NC: (i) the chi-square test and the likelihood- 
ratio test lead to correct decisions in all cases (e = 0.05); 
(ii) the binomial test fails in IV and the Neyman-  
Barton smooth test (via statistic p2) in III (when e = 
0.05); (iii) each of the Kolmogorov test, the Smirnov- 
Cramer-Von Mises test and the Neyman-Barton 
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Fig. 1. The best least-squares polynomial equation for <Io> as a function ofs for the four crystals (I) to (IV) of Table 1 (solid line). The crosses 
correspond to the observed data. The arrow denotes the least value of s for the reflexions of set B, namely 1/ami. (see § 5 of the text for 
definition of set B). 



M. N. PONNUSWAMY AND S. PARTHASARATHY 843 

smooth  test (via statistic p2) fails for two crystals. 
F r o m  the above discussion and a study of Table 3 

it is seen that  when the two observed values of any 
statistic (namely those corresponding to OV(C) and 
OV(NC) are compared  with the corresponding theo- 
retical critical values (at a=0"05  level) expected for 
the C and N C  cases (namely, those corresponding to 
CV(C) and CV(NC) in the b inomia l  test and that cor- 
responding to CV in the other tests) a correct decision 
could always be reached in all tests (except the Ney- 
m a n - B a r t o n  smooth  test via statistic p2) by rejecting 
that  al ternative for which the observed value of the 
statistic lies further into the critical region. If, for 
example,  the N e y m a n - B a r t o n  smooth  test (via statis- 
tic p2) is taken for III, it is seen that while the value 
of 74.35 for p2 lies far in the critical region (viz. 5.99 < 
p2 < ~ )  the value of 6.07 for p2 lies at the border  of 
the critical region. It is thus obvious that, a l though 
this test just  fails at a = 0 . 0 5  level when H0 is that the 
crystal is NC, it follows that  a correct decision (viz. 
the crystal is NC) could be obtained by the above 
procedure by rejecting the worse offender. Thus from 
the above study it turns out that a safe procedure for 
conduct ing the tests would be to compute  the two 
observed values of the statistic in each case and com- 
pare them with the corresponding critical values (for 
a=0 .05 ,  say) expected for the C and NC cases and 
finally reject the one for which the fit is worse. 

6. Concluding remarks 

Though the various criteria were discussed in §§ 4 and 
5 by assuming the crystal to obey the requirements  of 
the basic Wilson (1949) distr ibutions these could also 
be used to test the goodness-of-fit for crystals con- 
ta ining a few heavy atoms (besides a large number  of 
light atoms) and for crystals exhibi t ing pseudosym- 
metry in the a tomic arrangement ,  provided the ap- 
propriate  dis t r ibut ion functions are available. For  
triclinic crystals conta ining one or two heavy atoms in 
the unit cell the distr ibut ions and other relevant re- 
sults are avai lable  (Sim, 1958; Srinivasan, 1960; 
Sr ikr ishnan & Par thasara thy,  1970). The distr ibut ion 
functions needed for testing the goodness-of-fit for 
crystals exhibi t ing pseudosymmetry  are also available 
for a few specific cases (Lipson & Woolfson, 1952; 
Rogers & Wilson, 1953). The procedure for conduct ing 
the tests is s imilar  to that discussed in § 5. For  struc- 
tures with heavy atoms the pdf  of y depends on the 
parameter  a 2 (the fractional heavy-a tom contr ibu- 
tion to the local mean  intensity) which is a function 
of s and hence it is essential to use the mean  value of 
a~ z for specifying the distr ibut ion function of y. 

One  of the authors  (MNP)  thanks  the Universi ty 
Grants  Commiss ion,  New Delhi, India  for financial 
assistance. 

Table  3. Results of  the various statistical tests on the crystals of Table 1 
The case where a test leads to a wrong result (at ~=0"05 level) is indicated by showing the corresponding observed value of the statistic in 

bold type. 

Test 
Test statistic* 

1. Chi square T 

2. Likelihood ratio A 

3. Binomial B 

4. Kolmogorov nX/2Dn 

5. Smirnov-Cramer n W  2 

6. Neymon-Barton (a) pa 2 
smooth 

(b)p~ 

Crystalt 

I II III IV 
k~ 51 57 60 59 
CV 67-22 74" 18 77"65 76-50 
OV(C) 52-87 73"16 126.37 149.73 
OV(NC) 182.05 229.61 60"99 66.94 
k 51 57 60 59 
CV 67-22 74"18 77.65 76.50 
OV (C) 52-22 71"66 137.91 155.07 
OV (NC) 149.83 182-95 59"95 71.21 
CV (C) 1-65 1"65 1.65 1.65 
OV (C) - 1-35 - 4.45 11.78 11.23 
CV (NC) - 1-65 - 1.65 - 1.65 - 1-65 
OV (NC) - 15-02 - 21.39 - 1.26 - 1-80 
CV 1-36 1.36 1.36 1.36 
OV (C) 0.73 1.21 2.73 2-80 
OV (NC) 2.37 2.18 1-65 1.38 
CV 0-46 0.46 0.46 0.46 
OV (C) 0"08 0"53 2"10 2"28 
OV (NC) 2"12 2"31 0"51 0"51 
CV 3"84 3-84 3-84 3-84 
OV (C) 0.55 5.71 4.37 3-80 
OV (NC) 5"30 0"91 3"56 4-11 
CV 5.99 5-99 5.99 5"99 
OV (C) 0"57 5"73 74-35 80" 18 
OV(NC) 80-94 104.24 6.07 4.83 

* For definition of these see § 4. 
t I and II are centrosymmetric and III and IV are non-centrosymmetric. 
:I: k = number of equiprobable histogram bins for the y data of set C. 
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The calculation of wave functions of scattered electrons by the multislice method of Cowley and Moodie 
with a finite number of beams is shown to lead to the solution of a finite, closed set of differential equa- 
tions in the limit that the slice thickness approaches zero. The solution is normalized but differs from the 
exact wave function unless sufficient beams are included in the calculation. Hence, normalization is not 
sufficient to ensure that the computed wave function equals the exact wave function. The implications 
of this result for numerical work are discussed. 

Introduction 

The multislice method of Cowley and Moodie has been 
shown by Goodman & Moodie (1974) to give the 
solution of the form of Schr6dinger's equation in 
which backscattering is neglected. If one imposes the 
condition that the electrons are scattered by a periodic 
potential then this equation is equivalent to a count- 
ably infinite set of coupled differential equations de- 
scribing the amplitudes and phases of diffracted beams 
as a function of position in the scatterer. 

Since numerical methods of solving Schr6dinger's 
equation can account for the effects of only a finite 
number of beams it is worth examining the properties 
of approximate solutions obtained by methods in- 
volving a finite number of beams, and to see how the 
accuracy of these solutions might be estimated. While 
it is often not possible to determine analytic solutions 
to problems in which the effects of three or more 
beams are important, certain properties of the solu- 
tions can be obtained. 

One method of determining approximate solutions 

to Schr6dinger's equation is to consider a closed, finite 
subset of the differential equations which are equiva- 
lent to Schr6dinger's equation. It can then be shown 
that the solution of this finite set of equations is 
normalized, a term which is defined later and which 
implies that the number of electrons incident on the 
scatterer equals the number leaving it. This is also a 
property of the exact solution of Schr6dinger's equa- 
tion. To determine whether the solution is an adequate 
approximation to an unknown exact solution it must 
be compared with the solution to a different set of 
differential equations. 

Goodman & Moodie (1974) have suggested that the 
multislice method has an advantage over the method 
of truncating the set of differential equations in that 
it is possible to determine the accuracy of a wave 
function obtained by the multislice method with a 
finite number of beams without having to compare 
the results of calculations with different numbers of 
beams. Since for any non-zero slice thickness it is only 
in the limit that the number of beams becomes in- 
finitely large that a multislice calculation results in 


